Determination of Force Constants of Planar XY₃ and Tetrahedral XY₄ Molecules by the GF Matrix Method

Vesile Güçlü and Fatih Ucun

Department of Physics, Faculty of Arts and Sciences, Suleyman Demirel University, Isparta, Turkey Reprint requests to Dr. F. U.; Fax: +90-246-2371106; E-mail: fucun@fef.sdu.edu.tr

Z. Naturforsch. 60a, 183 – 186 (2005); received November 2, 2004

The force constants of the internal coordinates of planar XY_3 and tetrahedral XY_4 molecules were calculated using the GF matrix method. The matrix solutions were carried out by means of a computer program built relative to the Newton-Raphson method, and the calculations were listed in tables. For tetrahedral XY_4 molecules having the same Y atom it was found that the force constants decrease with the increasing mass of the X atom, and this was attributed to the slowing of the molecule with increasing mass of the centre X atom.

Key words: GF Matrix Method; Force Constants; XY₃ Molecules; XY₄ Molecules.

1. Introduction

The normal vibration theory of molecules by the GF matrix method has been given by many authors [1-4], and some authors have calculated the force constants of octahedral MX_6 molecules [5-6]. In our previous study we have calculated the force constants of nonlinear XY_2 molecules by this method [7].

In this present work, the force constants of planar XY_3 and tetrahedral XY_4 molecules were calculated by the GF matrix method. The matrix solutions were obtained by means of a computer program based on the Newton-Raphson method, and the exchanges of force constants with the mass of centre atom X for tetrahedral XY_4 molecules having the same Y atom were examined and commented.

2. Theory and Calculation

Planar XY₃ and tetrahedral XY₄ molecules have four normal modes of vibration as shown in Figs. 1a and 1b. They have the symmetry D_{3h} and T_d , respectively. The symmetry species of the vibrations are also given in the figure. These molecules have been described in terms of seven force constants in the internal coordinates. f_r denotes the bond stretch force constant, f_{rr} the interaction force constant between two Δr , $f_{r\alpha}$ the interaction force constant between Δr and $\Delta \alpha$ having a common bond, $f_{r\alpha}$ the interaction force constant between Δr and $\Delta \alpha$ having no common bond, f_{α} the

bending force constant, $f_{\alpha\alpha}$ the interaction force constant between two $\Delta\alpha$ having a common bond, $f_{\alpha\alpha}'$ the interaction force constant between two $\Delta\alpha$ having no common bond, and f_{θ} the force constant for the out-of-plane mode. The changes of Δr_i , $\Delta \alpha_i$ and $\Delta \theta$ can be seen in Figs. 2a and 2b.

2.1. Planar XY₃ Molecule

The elements of the G and F matrix for the mode in species A_1^\prime are

$$G = \mu_{\nu}, \quad F = f_r + 2f_{rr}, \tag{1}$$

for the mode in species A_2'' are

$$G = \frac{9}{4r^2}(\mu_y + 3\mu_x), \quad F = r^2 f_\theta, \tag{2}$$

and for the ones in species E' are

$$G_{11} = \mu_y + \frac{3}{2}\mu_x,$$

$$G_{12} = \frac{3\sqrt{3}}{2r}\mu_x,$$

$$G_{22} = \frac{3}{2r^2}(2\mu_y + 3\mu_x),$$
(3)

$$F_{11} = f_r - f_{rr},$$

$$F_{12} = r(f_{r\alpha}' - f_{r\alpha}),$$

$$F_{22} = r^2(f_{\alpha} - f_{\alpha\alpha}).$$
(4)

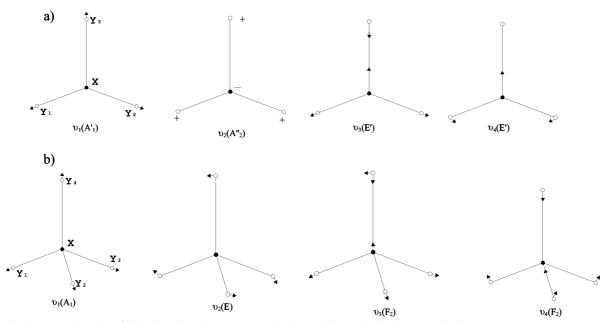


Fig. 1. Normal modes of vibration of a) planar XY₃ molecules, and b) tetrahedral XY₄ molecules.

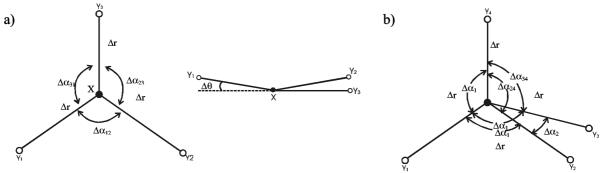


Fig. 2. The changes Δr_i , $\Delta \alpha_i$ and $\Delta \theta$ of a) a planar XY_3 molecule, and b) a tetrahedral XY_4 molecule.

$2.2.\ Tetrahedral\ XY_4\ Molecule$

The elements of the G and F matrix for the mode in species A_1 are

$$G = \mu_y, \quad F = f_r + 3f_{rr}, \tag{5}$$

for the mode in species E are

$$G = \frac{3}{r^2}\mu_y, \quad F = r^2(f_\alpha - 2f_{\alpha\alpha} + f_{\alpha\alpha}'), \tag{6}$$

and for the ones in species F_2 are

$$G_{11} = \mu_y + \frac{4}{3}\mu_x,$$

$$G_{12} = -\frac{8}{3r}\mu_x,\tag{7}$$

$$G_{22} = \frac{1}{r^2} \left(\frac{16}{3} \mu_x + 2 \mu_y \right),$$

$$F_{11} = f_r - f_{rr},$$

$$F_{12} = \sqrt{2}r(f_{r\alpha} - f_{r\alpha}'),$$

$$F_{22} = r^2(f_{\alpha} - f_{\alpha\alpha}')$$
(8)

[3-4]. μ_x and μ_y are the reciprocals of masses of X and Y atoms. The secular equation of the GF matrix is given by

$$|GF - E\lambda| = 0 \tag{9}$$

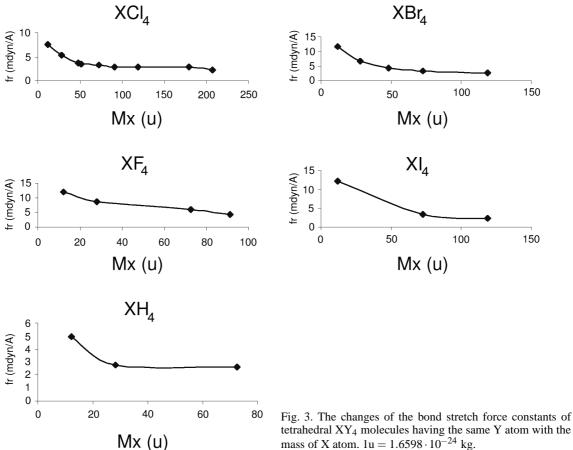
M-11-	(Å)	r	r	c	r	<i>c</i> /		<i>c</i>
Molecule	r(Å)	f_r	f_{rr}	$f_{r\alpha}$	f_{α}	$f_{r\alpha}{}'$	$f_{\alpha\alpha}$	f_{θ}
$^{10}\mathrm{BF}_3$	1.313	6.99956	0.91278	0.01630	0.38288	-0.03260	-0.19144	0.40884
$^{11}BF_{3}$	1.313	6.68966	1.06773	0.01743	0.38353	-0.03486	-0.19176	0.37867
$^{10}BCl_3$	1.742	3.59016	0.52147	0.01530	0.17040	-0.03061	-0.08520	0.19732
¹¹ BCl ₃	1.742	3.41753	0.60779	0.01642	0.17005	-0.03284	-0.08502	0.18122
$^{10}\mathrm{BBr}_3$	1.893	2.84083	0.39859	0.01462	0.14186	-0.02924	-0.07093	0.14085
$^{11}BBr_3$	1.893	2.68744	0.47528	0.01580	0.14328	-0.03161	-0.07164	0.12695
$^{10}{ m BI}_{3}$	2.118	2.18985	0.25444	0.01402	0.09441	-0.02804	-0.04720	0.11367
$^{11}{\rm BI}_{3}$	2.118	2.06937	0.31468	0.01512	0.09451	-0.03023	-0.04725	0.10357
SO_3	1.472	4.82449	2.96294	0.04290	2.28169	-0.08581	-1.14085	0.41271

Table 1. Bond lengths r [9] and force constants f of planar XY_3 molecules. Force constants are in units of mdyn/Å.

Molecule	$r(\mathring{A})$	f_r	f_{rr}	$f_{r\alpha}$	$f_{rlpha}{}'$	f_{α}	$f_{\alpha\alpha}$	$f_{\alpha\alpha}{}'$
CI ₄	2.150	12.23877	-3.29005	2.65063	-2.65063	1.88704	-0.03364	-1.75248
¹² CF ₄	1.323	12.12104	-0.95785	1.86773	-1.86773	1.51636	-0.11765	-1.04575
CBr_4	1.935	11.66016	-2.76812	2.41365	-2.41365	1.71373	-0.03892	-1.55804
$^{13}CF_{4}$	1.323	11.49810	-0.75699	1.75086	-1.75086	1.44667	-0.11765	-0.97606
SiF ₄	1.553	8.55447	-0.46393	1.02408	-1.02408	0.70547	-0.04465	-0.52684
OsO_4	1.712	8.16205	0.20492	0.25559	-0.25559	0.35728	-0.05806	-0.12503
CCl_4	1.767	7.63367	-1.07788	1.36557	-1.36557	1.02353	-0.05464	-0.80499
RuO_4	1.706	7.06629	0.10520	0.36345	-0.36345	0.37150	-0.05429	-0.15434
SiBr ₄	2.150	6.53723	-1.20621	1.20914	-1.20914	0.82331	-0.02118	-0.73858
GeF ₄	1.680	5.98002	0.03848	0.43063	-0.43063	0.28850	-0.02613	-0.18398
SiCl ₄	2.019	5.29852	-0.51464	0.79130	-0.79130	0.54148	-0.02610	-0.43706
CH_4	1.090	4.98200	0.02347	0.16184	-0.16184	0.38327	-0.07763	-0.07277
TiBr ₄	2.339	4.30008	-0.60330	0.70732	-0.70732	0.45466	-0.01432	-0.39738
ZrF_4	1.902	4.18533	-0.05211	0.26658	-0.26658	0.16000	-0.01399	-0.10404
TiCl ₄	2.170	3.70677	-0.18215	0.45530	-0.45530	0.27586	-0.01508	-0.21554
VCl_4	2.138	3.43330	-0.12324	0.40780	-0.40780	0.25502	-0.01901	-0.17898
$GeBr_4$	2.272	3.41086	-0.27777	0.48561	-0.48561	0.32439	-0.01591	-0.26075
GeCl ₄	2.113	3.32439	-0.01644	0.33313	-0.33313	0.24163	-0.02083	-0.15829
GeI_4	2.490	3.24058	-0.45021	0.53662	-0.53662	0.36312	-0.01495	-0.30331
$ZrCl_4$	2.320	2.92373	0.01487	0.26136	-0.26136	0.14896	-0.01114	-0.10439
$HfCl_4$	2.330	2.79272	0.08496	0.16455	-0.16455	0.10696	-0.01207	-0.05867
SnCl ₄	2.280	2.78170	0.00531	0.21704	-0.21704	0.14515	-0.01255	-0.09495
SiH_4	1.480	2.75837	0.02722	0.04244	-0.04244	0.17853	-0.03136	-0.05309
$SnBr_4$	2.440	2.64975	-0.12380	0.31449	-0.31449	0.19666	-0.01071	-0.15381
GeH_4	1.525	2.61367	0.00663	0.01751	-0.01751	0.15367	-0.02859	-0.03930
SnI_4	2.640	2.32410	-0.22147	0.33280	-0.33280	0.21165	-0.00917	-0.17495
PbCI ₄	2.430	2.19829	0.01163	0.12193	-0.12193	0.07504	-0.00939	-0.03744

Table 2. Bond lengths r [9] and force constants f of planar XY₄ molecules. Force constants are in units of mdyn/Å.

where E is the diagonal-unit matrix and the λ 's are eigenvalues of the matrix. The values of λ_i depend on the vibration frequencies by


$$\lambda_i = 4\pi^2 c^2 \bar{\nu}_i^2. \tag{10}$$

After forming of the GF matrix in (9), the solution of the matrix was carried out using a computer program based on the Newton-Raphson method [8], taking the vibration frequencies and the bonding distances into account. We calculated the force constants as $f_r = 6.99956$ and $f_r = 3.59016$ for planar BF3 and BCl3 molecules, respectively, and as $f_r = 2.75837$ for the tetrahedral SiH4 molecule. These values are very close to the values given in [4] for the same molecules. After this agreement, we found the force constants for planar XY3 and tetrahedral XY4 molecules, and

the results of these calculations are given in Tables 1 and 2, respectively. The values are suitable in error limits, also depend on the values taking from [3, 9]. This suitableness can be confirmed by comparing the values of f_r and f_α of some molecules with the ones obtained by neglecting the interaction constants in [4] for same molecules. As doing this, we found $f_r = 8.82512$, $f_\alpha = 0.39671$ for BF₃, and $f_r = 4.63310$, $f_\alpha = 0.17078$ for BCl₃ molecules. These values of f_r are absolutely same and the values of f_α are very close to the ones in [4] for the same molecule.

3. Discussion

Figure 3 shows the changes of the force constants of tetrahedral XY₄ molecules having the same Y atom with the mass of the X atom. As seen from the figure,

the force constants decrease with increasing mass of the X atom. These changes are also seen for planar XY₃ molecules from Table 1. As seen from the table, the force constants are lower for the molecules consisting of ¹¹B atom as X atom than the ones consisting of ¹⁰B atom for XY₃ molecules having the same Y atom.

tetrahedral XY₄ molecules having the same Y atom with the mass of X atom. $1u = 1.6598 \cdot 10^{-24}$ kg.

These were attributed to the slowing of the molecule with the increasing mass of the X atom. Because the more condensed phase has the lower frequency and force constants [7, 10] we think the molecule mobilises more slowly with the increasing mass of centre atom X like taking it to a more condensed phase.

- [1] E. B. Wilson Jr., J. Chem. Phys. 7, 1047 (1939).
- [2] E. B. Wilson Jr., J. Chem. Phys. 9, 76 (1940).
- [3] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley and Sons Inc., New York 1970, p. 58.
- [4] E.B. Wilson, J.C. Decius, and P.C. Cross, Molecular Vibrations, McGraw-Hill, New York 1955, p. 175.
- [5] E. Hahn and R. Hebisch, Spectrochim. Acta. 47A, 1097 (1991).
- [6] E. M. Nour, M. Zaky, and S. Sallam, Polyhedron 5/4, 929 (1986).
- [7] F. Ucun and V. Güçlü, Z. Naturforsch. **59a**, 621 (2004).
- [8] L. Bostock and S. Chandler, Core Maths, 2. Ed., Nelson Thornes, Cheltenham, U. K. 1994, p. 763.
- [9] D.R. Lide, Handbook of Chemistry and Physics, 83. Ed., CRC Press, New York 2002.
- [10] C.N. Banwell and E.M. McCash, Fundamental of Molecular Spectroscopy, McGraw-Hill Pub. Com., London, U. K. 1994, p. 87.